간단한 수학문제 하나 질문이요 ㅠ..
게시글 주소: https://image.orbi.kr/0001218700
a+b=4일때 4a^2+b^2의 최솟값은? (단 a>0 이고 b>0)
여기서 산술기하써서 4a^2=b^2으로 놓고 풀면 왜 답이 안나오는건가요..?
산술기하의 조건은 a>0 b>0 이기만하면 쓸수있는거아닌가요?
답을 안달았었네요;; 답은 64/5에요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잘 잤당 2
일찍 일어나쏭
-
논술70 교과30 인데 교과점수를 확인해보니 많이 낮더라고요.. 2학년엔 과학...
-
이거 치 가능? 2
어디든 제발….
-
이지영 풀커리 타는건 비추인가요?? 대성 끊을거라 임정환 이지영 중에 고민중이에요
-
왜내가하면그맛이안나지
-
다시 꽃 피는
-
의뱃 색도 바꿔주면 안되나??
-
얼버잠 1
다들 굿밤
-
지금 굳이 자려고 애쓸 필요는 없는듯
-
캬 4
ㅁㅌㅊ?
-
개구라입니다 죄송합니댜 ㅠㅠ 예비 고3 국어 커리 평가좀여 국어 : 독서(김동욱)...
-
손바닥으로 하늘 가리는거 개잘하네;; 확실히 동덕여대보단 똑똑하다
-
잠이 안옴 4
-
원랜 미적이라 확통쌩노베인데 여러 요인 따지다보니 확통에 마음이 가서 그냥 지금...
-
동시에 학사 두개 준비 가능??
-
수능 끝내고 대학 온 지가 어언 몇년이건만 수능이 주는 압박감을 받고 싶다 그 이거...
-
탐구 털려서 다시하면 ㅠ 수학은ㅜ뭐해야할까요 기출은 보기만 해도 그간의 고생이...
-
(전과있는사람한테 같이사는조건으로 계약서쓰고 수능준비한다는썰) 씨발 말이되냐고 ㅋㅋㅋㅋㅋ
-
선데이는 명전만
-
수변최고돼지국밥 본점 왔는데 맛있네오 웨이팅 말도안되게 엄청나다는데 월요일새벽이라 스근하게 입장
-
욕심 없는 사람이면 모르겠는데 욕심은많은데 노력을 안하면 정말 불행하게되는거같음...
-
서로 요구하는게뭐임뇨 [ ex) 물리는 변화량체크를잘해야함 화학은 계산이빨라야한다등등..]
-
이 정도면 어느 정도 갈 수 있나요? 이것저것 찾아보고 있는데 누구는 건대도 힘들...
-
진짜임뇨
-
내가 물스퍼거가 되면 되는 것 아닌가!
-
술마셔서 땡김뇨
-
잠뇨 8
ㅂㅂ
-
대학가면 이런것도 알려주나 일단 책이라도 읽어야하는데
-
조회수 대비 업로드 되는 글 수 이게 맞아?
-
꾸덕 바삭한 쿠키가 먹고싶다
-
옯창임?
-
이해가 ㅈ도 안됐음뇨 ㄹㅇ
-
https://youtu.be/rx6gz2I_suk?si=F7ltEkRc_jjWSiN...
-
내신 별로 안남았긴했는데 자료가 너무없어서,,1년에 5만원이고 사람모일때마다...
-
야식에 혼술 4
이때가 요즘 내가 제일행복한 순간일듯
-
하
-
어떻게일어나지?
-
윤석열을 타도하자같은 이런게 진짜 존재한거었나요 ㄷㄷ..
-
심연을 들여다보자
-
앞으로도 즐거운 시간 보내요
-
야식ㅇㅈ 3
-
설뱃 갖고싶다
-
멈춰야 하는 것 정신건강에 좋지않아요
-
결국 혼자다 혼자 ~
-
이번에 로지텍 무선마우스 자동충전해주는 패드 5만원에 핫딜 하던데 사고싶음......
-
잠이 안 오네 중간중간 깨긴했는데 나도 내가 15시간을 잘줄은 몰랐지
-
하... 다들 잘자요
-
가운데를 크게 벗어나지 않네
-
나중에 끄면 아무도 없다는 게 슬픔뇨
답이 뭔데요?
아 답은 64/5이에요
산술기하식이 구하고자 하는 식을 포함하지 않는 것 같은데요...
a+b≥2√ab
저의 눈으로는 직선과 타원으로 밖에 안보이네요ㅠㅠ
4a^2+b^2>=4ab이므로
4a^2+b^2의 최솟값은 4a^2=b^2일때 아닌가요..?
앗...;
제 눈이 삐꾸네요;;
아니에요 ㅠ..
혹시 제가 산술기하 사용한것중에 잘못된 부분이 있는건가요..?
4a^2+b^2 >= 4ab
네 근데 그렇게 하면 답이안나와서요;
ab가 확정값이 아닌데...
확정값이 아니면 사용할수 없는건가요..?
산술기하증명과정에서는 확정값에 대해서는 상관이 없던데..
a+b=4 일때 ab 최대값 나올때는 a=b 일 경우에 성립
4a^2+b^2 에서 산술기하 이용해서 ab최대값=구하려는 최소값으로 이용하려고 할 때 4a^2=b^2 이므로 2a=b 일 경우 성립.
각각 ab의 값이 최대가 되는 때가 a=b 일 경우와 2a=b 일 경우로 다르기 때문에 직접 대입 못합니다.
죄송한데 잘 이해가 안되요 ㅠ..
제일 첫문장과 마지막문장 좀 풀어서 설명해주시면 안될까요..?;;
그러니까 a+b >=2루트ab 에서 ab가 최대가 되려면 a=b 일 경우입니다. ( 이때 ab의 최대값=4 나옵니다.)
그런데, 4a^2+b^2>=4ab에서 구할 때. 이때 위에서 구한 ab=4를 넣어서 16이라고 하면 문제가 생기는게,
4a^2+b^2=4ab가 되는 경우는 4a^2=b^2 즉 2a=b 일 때입니다.
그런데 ab=4 가 성립하는 경우는 a=b 인 경우입니다. 따라서 두 조건이 동시에 만족할 수 없기 때문에 저때 산술기하로 못구해요
오랫동안 계속 보고나서 이해했네요.. ㄷㄷ..
그렇다면 산술기하쓸때는 a+b나 ab가 고정이 아닐때는 항상 그 점을 생각해줘야하는건가요?
그럼 만약 문제가 4a^2+b^2이 아닌 a^2+b^2이라면 산술기하를 사용할수 있는거구요..
제가 이해한게 맞나요..?
ㅇㅇ 등호조건 항상 생각하셔야 합니다. 한 곳에서 산술기하 적용해서 다른 식에 적용 할 경우에는요
< 대부분 적용 안되는 경우가 많습니다.>
a^2+b^2 일 경우는 당연 성립합니다.
덕분에 산술기하에대해 제대로 알게 된것같아요
좋은 답변 감사합니다~
타원과 직선으로 풀어보니 64/5가 나오긴 하네요...
산술기하는 아직...;
좀 더 해봐야겠네요..
타원과 직선 코시슈바르츠 그냥 대입하는방식 이 3가지로 하면 전부 64/5 나오더라구요..
분명 산술기하로 하면 안되는거같은데..
왜 그런지를 잘 모르겠어서요..
그르게요. 산술로만 안되네; 왜지
배울 때 a,b가 양수면 됐던걸로 아는데 -_-?
아 옛날에 고대 논술인가에도 뭔가 비스끄므리하게 산술기하로 멋지게 틀리는 문제가 있었던 것 같은데
역시 산술기하는 어렵군요;
좀 더 생각을~..
산술기하 쓸 때, 등호조건을 잊으시면 안되죠. ㅡ.,ㅡ a+b=4에서 ab=4라고 할 경우와, 4a^2+b^2의 최소값 구할때의 등호조건은 다르잖아요~
여태 맞춰진 문제에서만 산술기하를 써서 그걸 생각못하고 있던거같아요 ㅠ..
그럼 만약 이 문제가 4a^2+b^2이 아닌 ka^2+kb^2꼴의 최솟값을 구하는문제이거나 2a+b=4라면 이 산술기하로도 풀 수 있는거죠?
x+y=4 일때, x^2+y^2 의 최소를 구하는 경우와 같은데..
아마 값은 같게 나올듯 한데요, 이런 경우엔 산술 기하로 접근하는건 별로 안좋을듯해요.
솔직히 b=4-2a로 두고 식 정리해서 2차함수의 최솟값 구하기도 쉽고.. 아님 타원의 접선으로 해도 되니까요..
아 이 문제가 수학 상에 여러가지 부등식부분에 있던 문제거든요..
그래서 별 생각없이 산술기하로 풀다가 답이 엉뚱하게 나오더라구요 ㅠ..
계속 생각해봐도 잘모르겠어서..;; 여튼 덕분에 개념이 확실하게 잡힌거같아요
좋은 답변 감사합니다~
일반적인 FORM인 경우에 최대값을구할떈 합이 최소값을 구할땐곱이일정해야합니다
최대.최소
1.한문자로정리 : 4a^2 + (4-a)^2 이므로 그냥 이차함수.. 이게 제일빠른풀이
2.산술기하 : 합의 최솟값을 구하는 문제인데 곱이 일정하지 않으므로 산술기하로 풀기에 곤란하다
3.코시슈바르츠 : ( (2a)^2 + (b)^2 ) ( (1/2)^2 + (1)^2 ) >= ( (2a)(1/2) + (b)(1) )^2
4. =k 놓기 : a+b=4 에서 4a^2 + b^2 = k 로 놓으면 타원과 직선의 위치관계가 된다
여기서 타원의 한 접선이 a+b=4일때가 최소이므로 기울기가 -1인 접선
y = -x + root( (k/4)(1) + k ) 에서
root( (k/4)(1) + k ) = 4 -> k/4 + k = 16 -> 5k = 64 -> k=64/5
으아 이까지만쓸게요 ㅋㅋ
아 그리고
곱이 일정하지 않다고해서 사용할수 없는것은 아닙니다
4a^2 + b^2 >= 2 root(4a^2b^2)
은 분명히 맞는 식인데
4a^2 = b^2 일때 최솟값이 된다는것이 틀린것입니다
4a^2 = b^2 일 때는 다만 4a^2 + b^2 = 2 root(4a^2b^2) 등호가 성립한다는것 뿐이지
그이상 그이하도 아닙니다
그러니까 그말이 이문제를 산술기하를 사용할수없단말 아닌가요? 저 산술기하의 절대부등식이 성립되는건 일정하지않아도 성립하지만 최소값을 구할순없으니 사용할수없단말인거같은데요
ㅇㅇㅇㅇㅇ a+b나 ab의 값중 하나가 고정되지 않으면 그게 최소라고 할 수 없어요 그냥 등호가 성립한다는말
좀더 보충해보자면 꼭 그런 노말한형태의 합,차가 고정되있어야할필욘없어요 어떤식이든 합,차만일정하면 된답니다
좀더 보충해보자면 꼭 그런 노말한형태의 합,차가 고정되있어야할필욘없어요 어떤식이든 합,차만일정하면 된답니다
원래 산술기하는 이렇게 조건 주의 하지 않고 걍 쓰면 낚이는게 꽤 많아요 ...
이 글에는 댓글 인기가 대폭발이군요.
난 때려죽여도 산술기하로 이 문제를 풀고 싶다 하면...억지로 풀 수는 있습니다.
16 a^2 + b^2 ≥ 8ab 의 양변에 4 a^2 + 4 b^2 을 더해주면, 부등식 20 a^2 + 5 b^2 ≥ 4 (a+b)^2 = 64 가 나옵니다.
그러므로 4 a^2 + b^2 ≥ 64/5 가 되죠. 문제는 16 a^2 + b^2 ≥ 8ab 를 생각해 낸다는 것이 난감하다는 게 문제....
대박...